Un conductor eléctrico Es aquel cuerpo que puesto en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Generalmente elementos, aleaciones o compuestos con electrones libres que permiten el movimiento de cargas.
Son los elementos capaces de conducir la electricidad cuando son sometidos a una diferencia de potencial eléctrico. Los más comunes son los metales, siendo el cobre el más usado de entre todos ellos, otro metal utilizado es el aluminio y en aplicaciones especiales, debido a su baja resistencia y dureza a la corrosión, se usa el oro. Aunque todos los metales son conductores eléctricos existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (p.e. el agua de mar) y cualquier material en estado de plasma.
Para que un material se considere buen conductor se requiere que posea una baja resistencia para evitar elevadas caídas de tensión y pérdidas desmedidas por el Efecto Joule.
Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica.
Son los elementos capaces de conducir la electricidad cuando son sometidos a una diferencia de potencial eléctrico. Los más comunes son los metales, siendo el cobre el más usado de entre todos ellos, otro metal utilizado es el aluminio y en aplicaciones especiales, debido a su baja resistencia y dureza a la corrosión, se usa el oro. Aunque todos los metales son conductores eléctricos existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (p.e. el agua de mar) y cualquier material en estado de plasma.
Para que un material se considere buen conductor se requiere que posea una baja resistencia para evitar elevadas caídas de tensión y pérdidas desmedidas por el Efecto Joule.
Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica.
Interpretación
Un conductor eléctrico es aquel que tiene muy baja resistencia al paso de la corriente, permitiendo que el flujo eléctrico lo atraviese sin problemas, existes muchos tipos de materiales conductores entre ellos los más importantes son el cobre y el aluminio, ya que son muy utilizados en instalaciones eléctricas domesticas. También el oro y la plata son excelentes conductores pero no se utilizan a menudo por su alto costo, vale la pena destacar que todos los metales y sus aleaciones son conductores, y también existen metales no metales como el grafito capaz de conducir la corriente eléctrica. También los elementos en su estado plasmático como el agua y la solución salina, (los mares).
Semiconductores electricos
Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden creciente
Los semiconductores más conocidos son el silíceo (Si) y el germanio (Ge). Debido a que, como veremos más adelante, el comportamiento del silíceo es más estable que el germanio frente a todas las perturbaciones exteriores que pueden variar su respuesta normal, será el primero (Si) el elemento semiconductor más utilizado en la fabricación de los componentes electrónicos de estado sólido. A él nos referiremos normalmente, teniendo en cuenta que el proceso del germanio es absolutamente similar.
Como todos los demás, el átomo de silicio tiene tantas cargas positivas en el núcleo, como electrones en las órbitas que le rodean. (En el caso del silicio este número es de 14). El interés del semiconductor se centra en su capacidad de dar lugar a la aparición de una corriente, es decir, que haya un movimiento de electrones. Como es de todo conocido, un electrón se siente más ligado al núcleo cuanto mayor sea su cercanía entre ambos. Por tanto los electrones que tienen menor fuerza de atracción por parte del núcleo y pueden ser liberados de la misma, son los electrones que se encuentran en las órbitas exteriores. Estos electrones pueden, según lo dicho anteriormente, quedar libres al inyectarles una pequeña energía. En estos recaerá nuestra atención y es así que en vez de utilizar el modelo completo del átomo de silicio (figura 1), utilizaremos la representación simplificada (figura 2) donde se resalta la zona de nuestro interés.
Interpretación
Un semiconductor es aquel que no es directamente un conductor pero tampoco un aislante, tiene la capacidad de actuar tanto como conductor o aislante, de acuerdo a variables que se presenten como temperaturas, radiaciones, magnetismos etc. Estos materiales se emplean para crear componentes eléctricos como diodos o transistores, los semiconductores más conocidos son el silíceo y el germanio ya que son los más comunes que se emplean.
Distribucion de los electrones del silicio
Distribucion de los electrones en el germanio
Aislante electrico
El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material. Para más detalles ver semiconductor
Interpretación
Un aislante es aquel material que impiden el paso de la corriente, ya que sus moléculas forman una barrera potencial que impiden el paso total del flujo eléctrico.
Falto colocar la pagina de donde investigaron.
ResponderEliminar